Review: Natural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distribution

Shin Yun Seop January 02, 2024

Seoul national university, statistics, IDEA LAB

- Aleatoric uncertainty: data uncertainty, irreducible uncertainty.(cannot be reduced even if additional data is input, etc measurement error)
- Epistemic uncertainty: model uncertainty, reducible uncertainty. (if additional data is input then it can be reduced)

Uncertainty

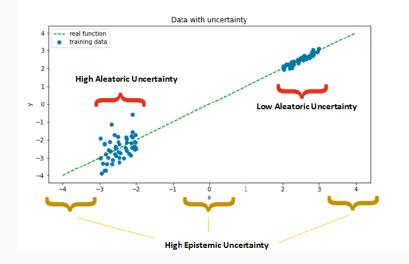


Figure 1: Type of uncertainty

- Sampling-based methods: For example, ensemble, dropout based on bayesian neural network. ⇒ Computation issue
- Sampling-free methods: They model uncertainty at the weight and/or activation levels ⇒ Constrained to specific architecture

Natural Posterior Network

- It applies to many common supervised learning task type. (Classification, Regression, Count prediction)
- For every input, it predicts the parameters of the posterior over the target exponential family distribution.
- It requires only a single forward pass at testing time.

Flexible, Reliable, Fast & Practical

Theorem

Bayes rule:

$\mathbb{Q}(heta | \mathcal{D}) \propto \mathbb{P}(\mathcal{D} | heta) \mathbb{Q}(heta)$

where, $\mathbb{P}(\mathcal{D}|\theta)$ is the target distribution of the target data \mathcal{D} given its parameter θ , and $\mathbb{Q}(\theta)$ and $\mathbb{Q}(\theta|\mathcal{D})$ are the prior and posterior distributions, respectively, over the target distribution parameters.

- Exponential family cover a wide range of target variables like discrete, continuous, counts or spherical coordinates.
- Parameters, density functions and statistics of exponential family can often be evaluated in closed-form.

Definition

Formally, an exponential family distribution on a target variable $y \in \mathbb{R}$ with natural parameters $\theta \in \mathbb{R}^L$ can be denoted as

$$\mathbb{P}(y|\theta) = h(y) \exp(\theta^T u(y) - A(\theta))$$

where $h : \mathbb{R} \to \mathbb{R}$ is base measure, $A : \mathbb{R}^L \to \mathbb{R}$ and $u : \mathbb{R} \to \mathbb{R}^L$ the sufficient stastistics.

Theorem

An exponential family distribution always admits a conjugate prior, which often also is a member of the exponential family

$$\mathbb{Q}(heta \mid oldsymbol{\chi}, n) = \eta(oldsymbol{\chi}, n) \exp\left(n heta^{ op}oldsymbol{\chi} - nA(heta)
ight)$$

where $\eta(\chi, n)$ is a normalization coefficient, $\chi \in \mathbb{R}^{L}$ are prior parameters and $n \in \mathbb{R}^{+}$ is the evidence.

Theorem

Given a set of N target observations $\{y^{(i)}\}_{i}^{N}$, it is easy to compute a closed-form Bayesian update,

$$\mathbb{Q}\left(\theta \mid \chi^{\text{post}}, n^{\text{post}}\right) \propto \exp\left(n^{\text{post}} \theta^{\mathsf{T}} \chi^{\text{post}} - n^{\text{post}} A(\theta)\right)$$

where $\chi^{post} = \frac{n^{prior} \chi^{prior} + \sum_{j}^{N} u(y^{(j)})}{n^{prior} + N}$ and $n^{post} = n^{prior} + N$. Also we can show that $\chi = \mathbb{E}_{Y}(u(Y))$. (Brown, 1986; Diaconis & Ylvisaker, 1979)

- NatPN extends the Bayesian treatment of a single exponential family distribution prediction by predicting an individual posterior update per input.
- Distinguish between the chosen prior parameters χ^{prior} , n^{prior} shared among sample, and the additional predicted parameter $\chi^{(i)}$, $n^{(i)}$ dependent on the input $x^{(i)}$ leading to the updated posterior parameters.
- The updated posterior parameters per one input are followed:

$$\chi^{\text{post},(i)} = \frac{n^{\text{prior}} \chi^{\text{prior}} + n^{(i)} \chi^{(i)}}{n^{\text{prior}} + n^{(i)}}, \quad n^{\text{post},(i)} = n^{\text{prior}} + n^{(i)}$$

- An arbitrary encoder f_φ maps the input x⁽ⁱ⁾ onto a low-dimensional latent vector z⁽ⁱ⁾ = f_φ(x⁽ⁱ⁾) ∈ ℝ^H.
- A linear decoder g_{ψ} is trained to output the parameter update $\chi^{(i)} = g_{\psi}(z^{(i)}) \in \mathbb{R}^{L}$.
- A single normalized density(typically, radial flow or masked auto regressive flow are used) is trained to output the evidence update $n^{(i)} = N_H \mathbb{P}(z^{(i)}|\omega)$.
- N_H is hyper parameter depending on H. On paper authors recommend $\left\{e^{\frac{1}{2}H}, e^H, e^{\log(\sqrt{4\pi})H}\right\}$.
- So, to train the model need to optimize $\phi,\,\psi,\,\omega.$

• Minimizing the Bayesian loss function.

$$\mathcal{L}^{(i)} = -\underbrace{\mathbb{E}_{\boldsymbol{\theta}^{(i)} \sim \mathbb{Q}^{\text{post },(i)}}\left[\log \mathbb{P}\left(\boldsymbol{y}^{(i)} \mid \boldsymbol{\theta}^{(i)}\right)\right]}_{(i)} - \underbrace{\mathbb{H}\left[\mathbb{Q}^{\text{post },(i)}\right]}_{(ii)}$$

where $\mathbb{H}\left[\mathbb{Q}^{\text{post},(i)}\right]$ denotes the entropy of the predicted posterior distribution $\mathbb{Q}^{\text{post},(i)}$.

This loss is guaranteed to be optimal when the predicted posterior distribution is close to the true posterior distribution Q^{*} (θ | x⁽ⁱ⁾) i.e. Q^{post, ,(i)} ≈ Q^{*} (θ | x⁽ⁱ⁾).

Optimization(Continue)

- The term (i) is the expected likelihood under the predicted posterior distribution.
- The term (ii) is an entropy regularizer acting as a prior which favors uninformative distributions H [Q^{post,(i)}] with high entropy.
- In our case, we assume the likelihood $\mathbb{P}\left(y^{(i)} \mid \theta^{(i)}\right)$ and the posterior $\mathbb{Q}^{\text{post},(i)}$ to be member of the exponential family so we can calculate it in closed form.

Likelihood \mathbb{P}	Conjugate Prior Q	Parametrization Mapping m	Bayesian Loss (Eq. 5)
$y \sim \operatorname{Cat}(p)$	$p \sim \operatorname{Dir}(\alpha)$	$\chi = lpha / n$ $n = \sum_c lpha_c$	$ \begin{aligned} \mathbf{(i)} &= \psi(\alpha_{y*}^{(i)}) - \psi(\alpha_{0}^{(i)}) \\ \mathbf{(ii)} &= \log B(\alpha^{(i)}) + (\alpha_{0}^{(i)} - C)\psi(\alpha_{0}^{(i)}) - \sum_{c} (\alpha_{c}^{(i)} - 1)\psi(\alpha_{c}^{(i)}) \end{aligned} $
$y \sim \mathcal{N}(\mu, \sigma)$	$\boldsymbol{\mu}, \boldsymbol{\sigma} \sim \mathcal{N} \Gamma^{\text{-}1}(\boldsymbol{\mu}_0, \boldsymbol{\lambda}, \boldsymbol{\alpha}, \boldsymbol{\beta})$	$\begin{split} \chi &= \begin{pmatrix} \mu_0 \\ \mu_0^2 + \frac{2\beta}{n} \end{pmatrix} \\ n &= \lambda = 2\alpha \end{split}$	$\begin{aligned} \mathbf{(i)} &= \frac{1}{2} \left(-\frac{\alpha}{\beta} (y - \mu_0)^2 - \frac{1}{\lambda} + \psi(\alpha) - \log\beta - \log 2\pi \right) \\ \mathbf{(ii)} &= \frac{1}{2} + \log\left((2\pi)^{\frac{1}{2}} \beta^{\frac{3}{2}} \Gamma(\alpha) \right) - \frac{1}{2} \log \lambda + \alpha - (\alpha + \frac{3}{2}) \psi(\alpha) \end{aligned}$
$y \sim \mathrm{Poi}(\lambda)$	$\lambda \sim \Gamma(\alpha,\beta)$	$\chi = lpha / n \ n = eta$	$\begin{aligned} \mathbf{(i)} &= (\psi(\alpha) - \log \beta)y - \frac{\alpha}{\beta} - \sum_{k=1}^{y} \log k\\ \mathbf{(ii)} &= \alpha + \log \Gamma(\alpha) - \log \beta + (1-\alpha)\psi(\alpha) \end{aligned}$

Figure 2: Examples of Exponential Family Distributions where $\psi(x)$ and B(x) denote Digamma and Beta function, respectively.

- Aleatoric uncertainty: The entropy of the target distribution P(y|θ) was used to estimate the aleatoric uncertainty. i.e. Ⅲ [P(y|θ)]
- Epistemic uncertainty: The entropy of the posterior distribution Q (θ | χ^{post}, n^{post}) was used to estimate the epistemic uncertainty.

Overview

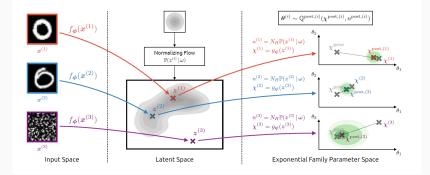


Figure 3: The right figure show epistemic uncertainty estimation. Third observation is highly uncertain.

- NatPN is capable of detecting OOD samples only with respect to the considered task and requires labeled examples during training.
- This is because NatPN does not perform OOD detection directly on the input but rather fits a normalizing flow on a learned space.
- For example, NatPN likely fails to detect a change of image color if the task aims at classifying object shapes and the latent space has no notion of color.

- Charpentier, Bertrand, Oliver Borchert, Daniel Zügner, Simon Geisler, and Stephan Günnemann. "Natural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distributions." ArXiv.org (2021): ArXiv.org, 2021. Web.
- Diaconis, Persi, and Donald Ylvisaker. "Conjugate Priors for Exponential Families." The Annals of Statistics 7.2 (1979): 269-81. Web.
- Brown, Lawrence D. "Fundamentals of Statistical Exponential Families with Applications in Statistical Decision Theory." Lecture Notes-monograph Series 9 (1986): I-279. Web.